mirror of
https://github.com/woodchen-ink/extractstamp.git
synced 2025-07-18 14:02:01 +08:00
448 lines
12 KiB
JavaScript
448 lines
12 KiB
JavaScript
// 移除 import 语句,因为我们使用全局的 cv 对象
|
|
|
|
let cvReady = false;
|
|
const primaryColor = "#ff0000";
|
|
|
|
function initOpenCV(callback) {
|
|
if (typeof cv !== "undefined") {
|
|
cvReady = true;
|
|
console.log("OpenCV.js 已加载");
|
|
callback && callback(true);
|
|
} else {
|
|
console.log("等待 OpenCV.js 加载...");
|
|
document.addEventListener("opencv-ready", () => {
|
|
cvReady = true;
|
|
console.log("OpenCV.js 已加载");
|
|
callback && callback(true);
|
|
});
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 提取指定颜色的印章
|
|
* @param img 要处理的图像
|
|
* @param extractColor 要提取的颜色,十六进制格式,如 "#FF0000"
|
|
* @param setColor 设置提取区域的新颜色,十六进制格式,如 "#0000FF"
|
|
* @returns 处理后的图像
|
|
*
|
|
* @example
|
|
* // 提取红色印章并将其设置为蓝色
|
|
* const img = document.getElementById('myImage');
|
|
* const extractedImg = extractStampWithColor(img, "#FF0000", "#0000FF");
|
|
*
|
|
* // 提取绿色印章并将其设置为黄色
|
|
* const greenStamp = document.querySelector('.stamp-image');
|
|
* const yellowStamp = extractStampWithColor(greenStamp, "#00FF00", "#FFFF00");
|
|
*/
|
|
function extractStampWithColorImpl(
|
|
img,
|
|
setColor = "#ff0000"
|
|
) {
|
|
if (cvReady) {
|
|
// 获取图片的宽高
|
|
const imgWidth = img.width;
|
|
const imgHeight = img.height;
|
|
console.log("图片宽度:", imgWidth, "图片高度:", imgHeight);
|
|
let src = cv.imread(img);
|
|
let dst = new cv.Mat();
|
|
let mask = new cv.Mat();
|
|
|
|
// 转换为HSV颜色空间
|
|
cv.cvtColor(src, dst, cv.COLOR_RGBA2RGB);
|
|
cv.cvtColor(dst, dst, cv.COLOR_RGB2HSV);
|
|
|
|
// 定义红色的HSV范围
|
|
// 低值范围 (0-10)
|
|
let lowRedA = new cv.Mat(dst.rows, dst.cols, dst.type(), [0, 50, 50, 0]);
|
|
let highRedA = new cv.Mat(dst.rows, dst.cols, dst.type(), [10, 255, 255, 255]);
|
|
|
|
// 高值范围 (170-180)
|
|
let lowRedB = new cv.Mat(dst.rows, dst.cols, dst.type(), [170, 50, 50, 0]);
|
|
let highRedB = new cv.Mat(dst.rows, dst.cols, dst.type(), [180, 255, 255, 255]);
|
|
|
|
// 创建掩码
|
|
let maskA = new cv.Mat();
|
|
let maskB = new cv.Mat();
|
|
cv.inRange(dst, lowRedA, highRedA, maskA);
|
|
cv.inRange(dst, lowRedB, highRedB, maskB);
|
|
|
|
// 合并掩码
|
|
cv.add(maskA, maskB, mask);
|
|
|
|
// 将十六进制颜色值转换为RGBA
|
|
const dstColor = hexToRgba(setColor);
|
|
console.log("dstColor:", dstColor);
|
|
|
|
// 创建带有 alpha 通道的目标图像
|
|
let result = new cv.Mat(src.rows, src.cols, cv.CV_8UC4, [0, 0, 0, 0]);
|
|
|
|
// 创建指定颜色的图像(带有 alpha 通道)
|
|
let colorMat = new cv.Mat(src.rows, src.cols, cv.CV_8UC4, [
|
|
...dstColor.slice(0, 3),
|
|
255,
|
|
]);
|
|
|
|
// 使用掩码将提取的区域设置为指定颜色,非提取区域保持透明
|
|
colorMat.copyTo(result, mask);
|
|
|
|
// 创建隐藏的canvas用来保存提取后的图片
|
|
const hiddenCanvas = document.createElement("canvas");
|
|
hiddenCanvas.width = result.cols;
|
|
hiddenCanvas.height = result.rows;
|
|
cv.imshow(hiddenCanvas, result);
|
|
let dataURL = hiddenCanvas.toDataURL("image/png");
|
|
|
|
// 释放内存
|
|
src.delete();
|
|
dst.delete();
|
|
mask.delete();
|
|
maskA.delete();
|
|
maskB.delete();
|
|
lowRedA.delete();
|
|
highRedA.delete();
|
|
lowRedB.delete();
|
|
highRedB.delete();
|
|
colorMat.delete();
|
|
result.delete();
|
|
return dataURL;
|
|
} else {
|
|
console.error("OpenCV.js 未加载");
|
|
return img;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 提取红色的印章
|
|
* @param file 图片文件
|
|
* @param setColor 设置的颜色,比如提取红色设置红色那么能够进行对印章的填充
|
|
* @param isCircle 是否是圆形,如果是圆形,那么会进行圆形的裁剪,否则进行椭圆的裁剪
|
|
* @returns
|
|
*/
|
|
function extractStampWithFile(file, setColor, isCircle = true) {
|
|
return new Promise((resolve, reject) => {
|
|
const img = new Image();
|
|
let distImgList = [];
|
|
img.onload = async () => {
|
|
let dstImg = extractStampWithColorImpl(img, setColor);
|
|
let debugCircle = true;
|
|
if (debugCircle) {
|
|
// 将base64的图像数据转换为Image对象
|
|
const base64ToImage = (base64) => {
|
|
return new Promise((resolve, reject) => {
|
|
const img = new Image();
|
|
img.onload = () => resolve(img);
|
|
img.onerror = (error) => reject(error);
|
|
img.src = base64;
|
|
});
|
|
};
|
|
// 将base64转换回Image对象
|
|
const resultRedImg = await base64ToImage(dstImg);
|
|
// 提取圆圈并获取结果
|
|
distImgList = extractCircles(resultRedImg, isCircle);
|
|
resolve(distImgList);
|
|
} else {
|
|
resolve([dstImg])
|
|
}
|
|
};
|
|
img.onerror = (error) => {
|
|
console.error("图片加载失败", error);
|
|
reject(new Error("图片加载失败"));
|
|
};
|
|
img.src = URL.createObjectURL(file);
|
|
});
|
|
}
|
|
|
|
/**
|
|
* 检测图像中的圆形
|
|
* @param dst 检测圆形的图像
|
|
* @returns 检测到的圆形列表
|
|
*/
|
|
function detectCircles(dst) {
|
|
// 创建一个新的Mat对象来存储检测到的圆形
|
|
let circles = new cv.Mat();
|
|
// 计算最小和最大半径,用于限制检测到的圆形大小
|
|
let minRadius = Math.min(dst.rows, dst.cols) * 0.03; // 最小半径为图像最小边的5%
|
|
let maxRadius = Math.min(dst.rows, dst.cols) * 0.5; // 最大半径为图像最小边的50%
|
|
// 使用Hough变换检测圆形
|
|
cv.HoughCircles(
|
|
dst,
|
|
circles,
|
|
cv.HOUGH_GRADIENT,
|
|
1, // 两个圆心之间的最小距离
|
|
dst.rows / 6, // 检测圆心之间的最小距离
|
|
200, // 修改检测圆形的阈值为200
|
|
50, // 检测圆形的阈值
|
|
minRadius, // 检测圆形的最小半径
|
|
maxRadius // 检测圆形的最大半径
|
|
);
|
|
|
|
// 初始化一个空数组来存储检测到的圆形信息
|
|
let detectedCircles = [];
|
|
// 遍历检测到的圆形
|
|
for (let i = 0; i < circles.cols; i++) {
|
|
// 将检测到的圆形信息转换为对象形式
|
|
detectedCircles.push({
|
|
x: circles.data32F[i * 3], // 圆心x坐标
|
|
y: circles.data32F[i * 3 + 1], // 圆心y坐标
|
|
radius: circles.data32F[i * 3 + 2] // 半径
|
|
});
|
|
}
|
|
console.log("detectedCircles:", detectedCircles, maxRadius, minRadius, dst.rows, dst.cols);
|
|
// 根据半径大小对检测到的圆形进行排序,确保最大的圆形排在前面
|
|
detectedCircles.sort((a, b) => b.radius - a.radius);
|
|
|
|
// 释放内存
|
|
circles.delete();
|
|
// 返回最大的3个圆形
|
|
return detectedCircles.slice(0, 6);
|
|
}
|
|
|
|
|
|
/**
|
|
* 提取印章圆形
|
|
* @param {*} img
|
|
* @param {*} isCircle
|
|
* @returns
|
|
*/
|
|
function extractCircles(img, isCircle = true) {
|
|
let src = cv.imread(img);
|
|
let dst = new cv.Mat();
|
|
|
|
// 转换为灰度图
|
|
cv.cvtColor(src, dst, cv.COLOR_RGBA2GRAY);
|
|
|
|
// 应用高斯模糊以减少噪声
|
|
cv.GaussianBlur(dst, dst, new cv.Size(5, 5), 2, 2);
|
|
|
|
// 创建画布
|
|
let canvas = document.createElement("canvas");
|
|
canvas.width = img.width;
|
|
canvas.height = img.height;
|
|
let ctx = canvas.getContext("2d");
|
|
// 绘制原始图像
|
|
ctx?.drawImage(img, 0, 0, canvas.width, canvas.height);
|
|
let croppedStamps = [];
|
|
if (isCircle) {
|
|
let circles = [];
|
|
// 检测圆形
|
|
circles = detectCircles(dst);
|
|
console.log("circles:", circles);
|
|
circles.forEach((circle) => {
|
|
console.log("draw circle:", circle);
|
|
croppedStamps.push(cropAndDownloadCircle(img, circle));
|
|
});
|
|
} else {
|
|
let ellipses = [];
|
|
// 检测椭圆
|
|
ellipses = detectEllipses(dst);
|
|
console.log("ellipses:", ellipses);
|
|
ellipses.forEach((ellipse) => {
|
|
console.log("draw ellipse:", ellipse);
|
|
croppedStamps.push(cropAndDownloadEllipse(img, ellipse));
|
|
});
|
|
}
|
|
|
|
// 释放内存
|
|
src.delete();
|
|
dst.delete();
|
|
|
|
return croppedStamps;
|
|
}
|
|
|
|
function cropAndDownloadCircle(img, circle) {
|
|
// 定义缩放因子,使裁剪范围比圆形大一些
|
|
const scaleFactor = 1.2; // 增加20%的范围,您可以根据需要调整这个值
|
|
// 计算新的半径和尺寸
|
|
let newRadius = circle.radius * scaleFactor;
|
|
let size = newRadius * 2;
|
|
|
|
// 创建一个新的canvas来裁剪圆形
|
|
let cropCanvas = document.createElement("canvas");
|
|
cropCanvas.width = size;
|
|
cropCanvas.height = size;
|
|
let ctx = cropCanvas.getContext("2d");
|
|
|
|
if (ctx) {
|
|
// 裁剪圆形区域
|
|
ctx.beginPath();
|
|
ctx.arc(newRadius, newRadius, newRadius, 0, Math.PI * 2);
|
|
ctx.closePath();
|
|
ctx.clip();
|
|
|
|
// 计算源图像的裁剪区域
|
|
let sx = circle.x - newRadius;
|
|
let sy = circle.y - newRadius;
|
|
let sWidth = size;
|
|
let sHeight = size;
|
|
|
|
// 确保不会裁剪到图像边界外
|
|
if (sx < 0) {
|
|
sWidth += sx;
|
|
sx = 0;
|
|
}
|
|
if (sy < 0) {
|
|
sHeight += sy;
|
|
sy = 0;
|
|
}
|
|
if (sx + sWidth > img.width) {
|
|
sWidth = img.width - sx;
|
|
}
|
|
if (sy + sHeight > img.height) {
|
|
sHeight = img.height - sy;
|
|
}
|
|
|
|
// 绘制裁剪后的图像
|
|
ctx.drawImage(img, sx, sy, sWidth, sHeight, 0, 0, size, size);
|
|
|
|
// 将裁剪后的图像转换为数据URL
|
|
let dataURL = cropCanvas.toDataURL("image/png");
|
|
return dataURL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 根据文件提取红色印章
|
|
* @param file
|
|
* @returns
|
|
*/
|
|
function extractRedStampWithFile(file) {
|
|
return new Promise((resolve, reject) => {
|
|
const img = new Image();
|
|
img.onload = () => {
|
|
const dstImg = extractRedStampWithColor(img, primaryColor);
|
|
resolve(dstImg);
|
|
};
|
|
img.onerror = (error) => {
|
|
console.error("图片加载失败", error);
|
|
reject(new Error("图片加载失败"));
|
|
};
|
|
img.src = URL.createObjectURL(file);
|
|
});
|
|
}
|
|
|
|
/**
|
|
* 提取红色印章
|
|
* @param img 原始图片
|
|
* @returns
|
|
*/
|
|
function extractRedStamp(img) {
|
|
if (cvReady) {
|
|
const dstImg = extractRedStampWithColor(img, primaryColor);
|
|
return dstImg;
|
|
} else {
|
|
console.error("OpenCV.js 未加载");
|
|
return null;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 提取红色印章
|
|
* @param img
|
|
* @param color
|
|
* @returns
|
|
*/
|
|
function extractRedStampWithColor(img, color = primaryColor) {
|
|
if (cvReady) {
|
|
// 获取图片的宽高
|
|
const imgWidth = img.width;
|
|
const imgHeight = img.height;
|
|
console.log("图片宽度:", imgWidth, "图片高度:", imgHeight);
|
|
let src = cv.imread(img);
|
|
let dst = new cv.Mat();
|
|
let mask = new cv.Mat();
|
|
|
|
// 转换为HSV颜色空间
|
|
cv.cvtColor(src, dst, cv.COLOR_RGBA2RGB);
|
|
cv.cvtColor(dst, dst, cv.COLOR_RGB2HSV);
|
|
|
|
// 定义红色和暗红色的HSV范围
|
|
let lowRedA = new cv.Mat(dst.rows, dst.cols, dst.type(), [0, 100, 100, 0]);
|
|
let highRedA = new cv.Mat(
|
|
dst.rows,
|
|
dst.cols,
|
|
dst.type(),
|
|
[50, 255, 255, 255]
|
|
);
|
|
let lowRedB = new cv.Mat(
|
|
dst.rows,
|
|
dst.cols,
|
|
dst.type(),
|
|
[160, 100, 100, 0]
|
|
);
|
|
let highRedB = new cv.Mat(
|
|
dst.rows,
|
|
dst.cols,
|
|
dst.type(),
|
|
[180, 255, 255, 255]
|
|
);
|
|
|
|
// 创建掩码
|
|
let maskA = new cv.Mat();
|
|
let maskB = new cv.Mat();
|
|
cv.inRange(dst, lowRedA, highRedA, maskA);
|
|
cv.inRange(dst, lowRedB, highRedB, maskB);
|
|
|
|
|
|
cv.add(maskA, maskB, mask);
|
|
|
|
// 将十六进制颜色值转换为RGB
|
|
const dstColor = hexToRgba(color);
|
|
console.log("dstColor:", dstColor);
|
|
// 创建纯红色图像
|
|
let red = new cv.Mat(src.rows, src.cols, src.type(), dstColor);
|
|
|
|
// 使用掩码将红色区域设置为纯红色
|
|
red.copyTo(dst, mask);
|
|
|
|
// 创建隐藏的canvas用来保存提取后的图片
|
|
const hiddenCanvas = document.createElement("canvas");
|
|
hiddenCanvas.width = dst.cols;
|
|
hiddenCanvas.height = dst.rows;
|
|
cv.imshow(hiddenCanvas, dst);
|
|
let dataURL = hiddenCanvas.toDataURL("image/png");
|
|
let link = document.createElement("a");
|
|
link.download = "extracted_red_image.png";
|
|
link.href = dataURL;
|
|
link.click();
|
|
|
|
// 释放内存
|
|
src.delete();
|
|
dst.delete();
|
|
mask.delete();
|
|
maskA.delete();
|
|
maskB.delete();
|
|
lowRedA.delete();
|
|
highRedA.delete();
|
|
lowRedB.delete();
|
|
highRedB.delete();
|
|
red.delete();
|
|
return dst;
|
|
} else {
|
|
console.error("OpenCV.js 未加载");
|
|
return img;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 将十六进制颜色值转换为RGBA
|
|
* @param hex
|
|
* @returns
|
|
*/
|
|
function hexToRgba(hex) {
|
|
let r = parseInt(hex.slice(1, 3), 16);
|
|
let g = parseInt(hex.slice(3, 5), 16);
|
|
let b = parseInt(hex.slice(5, 7), 16);
|
|
let a = 255;
|
|
if (hex.length === 9) {
|
|
a = parseInt(hex.slice(7, 9), 16);
|
|
}
|
|
return [r, g, b, a];
|
|
}
|
|
|
|
// 在文件末尾,将函数添加到全局作用域
|
|
window.initOpenCV = initOpenCV;
|
|
window.extractRedStampWithFile = extractRedStampWithFile;
|
|
window.extractRedStamp = extractRedStamp;
|
|
window.extractStampWithFile = extractStampWithFile;
|
|
|